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Covariance functions and random regression models
for cow weight in beef cattle1
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ABSTRACT: Data from the first four cycles of the
Germplasm Evaluation program at the U.S. Meat Ani-
mal Research Center were used to evaluate weights of
Angus, Hereford, and F1 cows produced by crosses of
22 sire and 2 dam (Angus and Hereford) breeds. Four
weights per year were available for cows from 2 through
8 yr of age (AY) with age in months (AM). Weights (n
= 61,798) were analyzed with REML using covariance
function-random regression models (CF-RRM), with re-
gression on orthogonal (Legendre) polynomials of AM.
Models included fixed regression on AM and effects of
cow line, age in years, season of measurement, and
their interactions; year of birth; and pregnancy-lacta-
tion codes. Random parts of the models fitted RRM
coefficients for additive (a) and permanent environmen-
tal (c) effects. Estimates of CF were used to estimate
covariances among all ages. Temporary environmental
effects were modeled to account for heterogeneity of
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Introduction

The importance of body size to efficiency has led to
selection for variables associated with mature weight.
Body size or growth can be represented by a set of size-
age points that gradually change until reaching a pla-
teau at maturity. These points represent a set of many
highly correlated measures. The challenge is to condense
the data points for an animal into a manageable set of
parameters with biological meaning. Several approaches
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variance by AY. Quadratic fixed regression was suffi-
cient to model population trajectory and was fitted in
all analyses. Other models varied order of fit and rank of
coefficients for a and c. A parsimonious model included
linear and quartic regression coefficients for a and c,
respectively. A reduced cubic order sufficed for c. Esti-
mates of all variances increased with age. Estimates for
older ages disagreed with estimates using traditional
bivariate models. Plots of covariances for c were smooth
for intermediate, but erratic for extreme ages. Herita-
bility estimates ranged from 0.38 (36 mo) to 0.78 (94
mo), with fluctuations especially for extreme ages. Esti-
mates of genetic correlations were high for most pairs
of ages, with the lowest estimate (0.70) between ex-
treme ages (19 and 103 mo). Results suggest that al-
though cow weights do not fit a repeatability model with
constant variances as well as CF-RRM, a repeatability
model might be an acceptable approximation for predic-
tion of additive genetic effects.

have been proposed, from a simple repeatability model
to a full multivariate model. Intermediate alternatives
include traditional “growth functions,” which explain the
growth trajectory using a few parameters defined by a
deterministic equation. A recent approach has been to
use covariance functions (CF, Kirkpatrick and Heck-
man, 1989) and random regression models (RRM, Hen-
derson, Jr., 1982; Schaeffer and Dekkers, 1994). The
equivalence of CF and RRM has been described (e.g.,
Meyer and Hill, 1997; van der Werf et al., 1998). Under
this framework, infinite-dimensional stochastic models
have been proposed with the phenotype represented as
a continuous function of time. The covariance between
two measurements is defined as a function of the ages
and some basic coefficients. Orthogonal polynomials
(e.g., Legendre polynomials) are often used to represent
coefficients for the RRM, assuming that the trajectory
can be described by such polynomials. The main require-
ment for the model is that the time-dependent response
can be expressed as a function of a set of covariates
(Schaeffer and Dekkers, 1994).

 by on October 1, 2009. jas.fass.orgDownloaded from 

http://jas.fass.org


Covariance functions and random regression models 55

Table 1. Number of sires (cows) by breed of sire for Cycles I to IV of the GPE Program

Cycle I Cycle II Cycle III Cycle IV
Breed of sire (1970 to 1972) (1973 to 1974) (1975 to 1976) (1986 to 1990)

Herefordab 31 (121) 15 (86) 13 (68) 48 (169)
Angusab 33 (123) 17 (92) 14 (30) 49 (164)
Jersey 32 (106)
South Devon 27 (109)
Simmental 27 (151)
Limousin 20 (148)
Charolaisb 26 (123) 32 (82)
Red Poll 16 (87)
Brown Swiss 11 (127)
Maine Anjou 17 (86)
Chianina 19 (86)
Gelbviehb 11 (77) 16 (76)
Brahman 17 (101)
Sahiwal 6 (86)
Pinzgauerb 9 (103) 15 (81)
Tarentaise 6 (80)
Shorthorn 22 (69)
Galloway 27 (70)
Longhorn 24 (81)
Nellore 22 (81)
Piedmontese 18 (83)
Salers 25 (86)
Total 196 (881) 106 (641) 65 (468) 298 (1,042)

aHereford and Angus reference sires, originally sampled in 1969, 1970, and 1971, were used in all cycles.
bHereford, Angus, Charolais, Gelbvieh, and Pinzgauer sires born after January 1982 were used in Cycle

IV in addition to the original Hereford and Angus reference sires.

This paper presents estimates of genetic and pheno-
typic parameters using the CF-RRM approach for cow
weights from the first four cycles of the Germplasm Eval-
uation Program, at the U.S. Meat Animal Research Cen-
ter. Previous reports presented parameter estimates for
cow traits as summarized by Arango et al. (2002); how-
ever, this is the first study that uses the CF-RRM in
analysis of data from the evaluation program popu-
lations.

Materials and Methods

Data

Data from the first four cycles of Germplasm Evalua-
tion Program included weights of purebred Angus and
Hereford cows (Cycles I, II, and IV) and crossbred cows
(all cycles) produced by mating Angus and Hereford
dams to 22 breeds of sire. The breeds, numbers of sires,
and cows by breed of sire for each cycle are in Table 1.
Hereford-Angus reciprocal crosses were produced in
each cycle. Some Angus and Hereford sires used in Cycle
I were repeated as reference sires in following cycles to
provide genetic ties across all cycles. Cycle I began with
the 1969 breeding season, with matings through artifi-
cial insemination (AI) of Hereford, Angus, Jersey, South
Devon, Limousin, Simmental, and Charolais bulls to
Hereford and Angus cows. Calves were born in March,
April, and early May of 1970, 1971, and 1972. Cycle II
included two calving seasons (1973 and 1974). Hereford
and Angus cows from Cycle I were bred by AI to Hereford,

Angus, Braunvieh, Red Poll, Maine Anjou, Gelbvieh, and
Chianina bulls. Cycle III was initiated with Angus
and Hereford cows from Cycles I and II during the 1974
breeding season when they were bred by AI to Hereford,
Angus, Pinzgauer, Tarentaise, Brahman, and Sahiwal
sires to produce crossbred calves in two calving seasons
(1975 and 1976). Cycle IV extended over five calving
seasons (1986 through 1990). Angus and Hereford cows
were bred with semen from Hereford and Angus refer-
ence bulls (born from 1963 to 1970) and 1980s’ bulls (born
from 1982 to 1984) as well as Longhorn, Piedmontese,
Charolais, Salers, Galloway, Nellore, and Shorthorn
bulls. Additionally, some Hereford, Angus, Charolais,
Gelbvieh, and Pinzgauer bulls (born from 1983 through
1985) were also used by natural service following an AI
period of about 45 d.

All females were retained for evaluation of reproduc-
tion, mature weight, height, and other cow traits as well
as maternal performance. Length of breeding season was
approximately 75 d. Pregnancy was diagnosed by palpa-
tion 60 to 75 d after the end of the breeding season. All
heifers diagnosed as not pregnant and cows failing to
conceive in two successive years were culled from the
breeding herd. Animals were not culled for any growth
criteria. Yearling heifers were weighed at the beginning
and end of the mating season and when palpated for
pregnancy. Thereafter, cows were weighed, measured
for hip height, and scored for body condition four times
each year. One measurement was taken each season:
1) mid-May (spring) at start of the breeding season, 2)
beginning of August (summer) at the end of the breeding
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Figure 1. Mean weight by age of Cycle I to IV cows.

season, 3) end of October (fall) at palpation for pregnancy
following weaning, and 4) beginning of February (winter)
before calving. Each record of a cow was assigned to one
of four physiological codes composed of a combination
of lactation code (1 = not lactating, 2 = lactating) and
pregnancy code (1 = not pregnant, 2 = pregnant). The
present study included only records of 2-yr-old or older
cows with assigned physiological code. Additional details
about data edits and management were presented by
Arango (2000). Postweaning management and sampling
of sires were discussed by Laster et al. (1976, 1979) and
Gregory et al. (1979) for Cycles I to III, and by Cundiff
et al. (1998) and Thallman et al. (1999) for Cycle IV.

A total of 85 ages, ranging from 19 to 103 mo, was
represented (Cycles I to IV). The total of 61,798 individ-
ual weights was from 3,032 individual cows having be-
tween 6 and 28 measurements (up to 4 per year). Most
cows (80%) had 18 or more recorded measurements. Pre-
sented in Figure 1 are unadjusted weights by age (mo),
which tended to increase with age and which have a
somewhat seasonal fluctuation pattern.

Statistical Methods

Covariance functions have been proposed as an alter-
native to deal with trajectory or longitudinal data, such
as growth (Kirkpatrick and Heckman, 1989; Kirkpatrick
et al., 1990, 1994; Meyer and Hill, 1997). The CF is
defined to quantify variation of the growth trajectories
about the mean, which is equivalent to the covariance
matrix in the finite-dimensional model (Kirkpatrick and
Heckman, 1989; Kirkpatrick et al., 1990). The CF can be
used to describe the covariance between any two records
measured at given ages as a function of the ages and
some basic coefficients, which can be determined with
traditional linear mixed models. An equivalent proce-

dure was proposed originally using random regression
models (Henderson, Jr., 1982; Laird and Ware, 1982;
Jennrich and Schluchter, 1986). Schaeffer and Dekkers
(1994) and Jamrozik and Schaeffer (1997) described the
procedure for test-day records of dairy cattle as a method
similar to that used with the maternal genetic effects
model, with the difference that with RRM the design
matrix contains coefficients different from 0 or 1. The
CF is equivalent to the covariance matrix estimated with
RRM using functions of age as covariables. The equiva-
lence between CF and RRM has been described (Meyer
and Hill, 1997; Meyer, 1998a; van der Werf et al., 1998;
Schaeffer, 1998; Gengler et al., 1999). Orthogonal poly-
nomials often have been the basis of statistical growth
curve models (Sandland and McGilchrist, 1979), they
represent the coefficients most widely used to describe
size-age relationships in animals (Fitzhugh, 1976), and
they have been chosen as suitable functions to represent
coefficients for the CF (Kirkpatrick et al., 1990, 1994;
Meyer and Hill, 1997) and for RRM (Meyer, 1998a,c;
1999, 2000; van der Werf et al., 1998). The most im-
portant property of orthogonal polynomials is “intrinsic
and numerical simplicity,” which allows numerical com-
putation to an accuracy limited only by round-off error
(Thompson, 1997). In general, polynomial regression
provides flexibility for modeling continuous response
functions by adding terms until the data are fitted with
the desired lack of distortion. Matrices of orthogonal
polynomials have columns that are mutually orthogonal,
which avoid the problem of near-singularity that is com-
mon with the “natural” polynomials. Meyer (2000) con-
cluded that orthogonal polynomials can be recommended
as general-purpose functions for modeling growth data,
especially if higher orders of fit are needed. However,
orthogonal polynomials suffer some deficiencies when
used to model growth data: 1) they do not model cyclic
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patterns, which are typical for growth subject to seasonal
effects, and 2) they are not asymptotic, which is a prob-
lem in modeling growth trajectories that reach a plateau
at maturity. Orthogonal polynomial coefficients, based
on the set of ages (times) represented in the data, should
be standardized to the range −1 ≤ a ≤ 1 (Kirkpatrick and
Heckman, 1989). The set of orthogonal polynomials of
age can be arranged in a matrix (Φ = MΛ), which is the
product of a square matrix containing the coefficients of
the Legendre polynomials (Λ) of a given order (n × n)
and another matrix (M) containing the polynomials of
the corresponding standardized ages (a*0

i , a*1
i , a*2

i , . . . ,

yij = F + ∑
n − 1

m = 0

bm φm (tij) + ∑
nG − 1

m = 0

αim φm (tij) + ∑
nP − 1

m = 0

γim φm (tij) + εij [2a]

y = Xb + Za + Z*p + e [2b]

where F are the fixed effects in the model; φm (tij) are
the covariates as a function of age with tij, the jth age of
animal i standardized to the range −1 to 1, and with φm,
the mth orthogonal Legendre polynomial for n the order
of fit (with φm evaluated for tij, there will be n coefficients
for each age); bm is the mth fixed regression coefficient;
αim and γim are the mth additive genetic and permanent
environmental random regression coefficients for cow i;
nG and nP are orders of fit for the additive genetic and
permanent environmental effects; and εij is the tempo-
rary environmental effect or measurement error. The
RRM is an extension of the regular linear mixed model,
but with incidence matrices (X and Z) containing coeffi-
cients other than zeros and ones. Coefficients of 1 are
replaced by functions of ages at which the records are
taken (i.e., φm (tij)). The “design” matrix of covariates
(standardized ages, incorporating orthogonal polynomial
coefficients) is Z for all animals and Z* is the part of Z
corresponding to cows with records (i.e., nonzero part).
The model’s first and second moments are

E[y] = Xb and
V(y) = Z(KG ⊗ A)Z′ + Z* (Kp ⊗ I)Z′* + R

where A and I are the numerator relationship matrix
and an identity matrix, respectively; KG and KP are the
matrices of genetic and permanent environmental (co)-
variances (coefficients of the CF), with dimensions equal
to the order of the covariance matrices in the analysis;
and R is the variance of the temporary environmental
effects, which is a diagonal matrix allowing for different
variances by age t.

Applications of CF-RRM to growth and related traits
have included papers by Andersen and Pedersen (1996)
in pigs. Koenen and Veerkamp (1998) used it for live
weight, condition score, and feed intake; Koenen et al.
(1999), for live weight and live weight changes; Jones et
al. (1999), for condition score; and Veerkamp and Thomp-
son (1999), for live weight and feed intake of dairy cows.

a*n−1
i ), with rows Φn = a*iΛ. The elements of the covari-

ance matrix (e.g., G, the additive genetic covariance ma-
trix) can be expressed in terms of matrices that are
defined by the Legendre polynomial functions and by
the standardized age values as G = ΦKΦ′ = M(ΛKΛ′)M′ =
MΩM′ (1), where K is a matrix of coefficients, which
determines the CF as a function of the “coefficient ma-
trix” (Ω = ΛKΛ′) and the ages adjusted to the range
for which the polynomial is defined (M). Following the
notation of Kirkpatrick et al. (1990, 1994), the RRM
model for records over time (including additive genetic
and permanent environmental random effects) would be
as follows:

For growth of beef cattle, the method was outlined by
Varona et al. (1997) and used by Meyer (1998a, 1999,
2000) for cows, and by Meyer (2001) and Albuquerque
and Meyer (2001) for young animals.

Statistical Analysis

Preliminary analyses were done to determine fixed
effects affecting weight using Proc Mixed in SAS (Littell
et al., 1996) and to find the best order of fit for fixed
regression on age to model population trajectory. The
quadratic regression on age was the highest order poly-
nomial that was significant. Therefore, quadratic regres-
sion was used in the fixed part of the models for all CF-
RRM analyses, which allowed use of the likelihood ratio
test to determine the optimum order of fit (and rank) of
the random regression coefficients (Meyer, 1998a, 1999).
The set of fixed effects used in the CF-RRM analyses for
cow weight included the same effects as for previous
finite-dimensional analyses (Arango et al., 2002): sire
line, dam line, age (yr), and season and their interac-
tions; year of birth; pregnancy-lactation code; plus qua-
dratic fixed regression on orthogonal polynomials of age.
That model was used to allow comparison of estimates
of variance components with CF-RRM and finite-dimen-
sional approaches.

The matrices, KG and KP, corresponding to the addi-
tive genetic and permanent environmental covariance
functions (G and P), were estimated as covariance matri-
ces for the corresponding random regression coefficients.
Additive genetic and permanent environmental random
effects for the CF-RRM analyses were assumed to be
uncorrelated, as with usual linear animal model analy-
ses. The CF-RRM analyses were carried out by REML
using the DFREML-DxMRR programs (Meyer, 1998b,d).
The software allows choice of two algorithms to max-
imize the likelihood function (�): derivative-free (DF-
REML: with the Simplex or Powell algorithms) and av-
erage information (AI-REML). The CF-RRM analyses
were done with age of the cow expressed in months. For

 by on October 1, 2009. jas.fass.orgDownloaded from 

http://jas.fass.org


Arango et al.58

an order of fit, n, the exponents of age range from 0 (i.e.,
the first term of the polynomial is a scalar) to n − 1.
Therefore, n = 2 is linear regression and so on. Initially,
additive genetic and permanent environmental covari-
ance functions were obtained for the same order of fit
(nG = nP). Later, each was allowed to have a different
order of fit. Orders of fit considered were 1 to 5, but only
selected combinations were analyzed. Greater orders of
fit were not explored due to the computing time that
would have been required. Analyses forcing the covari-
ance matrices (KG and KP) to have reduced rank, as
described by Meyer (1998a), were also carried out for
selected analyses of different orders of fit, to find a parsi-
monious model. Alternative models were compared us-
ing the likelihood ratio test.

Temporary environmental effects (measurement er-
rors) were assumed to be independently distributed. Two
sets of analyses were done considering temporary envi-
ronmental effects: to have constant variance over all
ages or to have different variances for each age (in years)
represented in the data (heterogeneous variances). Pre-
liminary analyses determined that models using hetero-
geneous error variances were significantly superior to
models with a single residual variance. Analyses with a
different error variance for each age in months repre-
sented in the data were extremely slow to converge. Even
though the log likelihood improved significantly, the im-
provement did not offset the extra computing load and
time required for the computing resources available.
Thus, only heterogeneity of residual variances by years
of age was modeled (i.e., residual variances representing
ages 2 to 8). Reconstructed covariance matrices were
obtained among all ages (in months) represented in the
data from estimates of elements of the corresponding
CF matrix. Local convergence was initially declared
when the variance of the � was less than 10−7; however,
that criterion was relaxed (i.e., no changes to the second
decimal point for � or for parameter estimates) in analy-
ses with a large number of parameters, which had re-
markably slow convergence. Arango (2000) presented
details about the statistical methods and analyses.

Results and Discussion

Log Likelihoods

With 85 ages represented, almost any model is compu-
tationally more feasible than the full (unstructured) mul-
tivariate model because of the great complexity and com-
putational demand of a model including measurements
at all ages as different traits. Several analyses with dif-
ferent orders of fit and ranks were tried to find a parsimo-
nious model that described the data adequately with a
moderate number of parameters. The � values improved
significantly each time the additive genetic and the per-
manent environmental random regression parts of the
model were modeled with increased orders of fit, as
shown in Table 2 for models 3-1-1 to 3-4-4 (i.e., fixed
regression of order 3 and nG = nP = n = 1, 2, 3, and 4),
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with 9, 13, 19, and 27 parameters to estimate (consisting
of seven residual variances plus the elements of coeffi-
cient matrices KG and KP), respectively. Analyses were
started with guessed values for the (co)variances be-
tween additive genetic and permanent environmental
random regression coefficients. Values for the first order
were assumed from estimates with finite dimensional
models (Arango et al., 2002). Initial values for higher
order polynomials were taken from literature reports
(Meyer, 1998a, 1999, 2000). In general, convergence was
remarkably slow. For most analyses, several restarts
were required before � stabilized and a global maximum
was reached (when � did not change at the second deci-
mal on consecutive restarts), especially for analyses
when one or more eigenvalues of the KG and KP were
close to zero. In some cases, the likelihoods stabilized to a
false local maximum, which was evident if the likelihood
improved when the maximization procedure was
changed (i.e., from AI-REML to DF-REML). Meyer
(1999) reported the same problem, which was due to
failure of the search procedure with a high number of
parameters and estimates near the boundary of the pa-
rameter space (eigenvalues close to zero), even with more
than one “restart” of the maximization procedure. Some
analyses stopped with an iterative run in progress and
provided numerical exception error messages or failed
to improve the log likelihood, which might be a sign of
numerical or mathematical instability. These failures
occurred when a number of unnecessary parameters
were included. Convergence problems have been indi-
cated as the cause of discrepancies between genetic vari-
ances obtained from CF-RRM and multitrait models for
live weight during the first 25 wk of lactation of Holstein
heifers (Koenen and Veerkamp, 1998) and also for analy-
ses of live weight during the first 15 wk of lactation of
Holstein heifers (Veerkamp and Thompson, 1999) using
a different program (ASREML, Gilmour et al., 1999), for
which analyses with order k = 4 and k = 2 did not con-
verge for univariate and multivariate (milk yield and
feed intake) models, respectively.

A Parsimonious Model

The search for a parsimonious model that would fit
the data adequately with the least complexity was at-
tempted by concentrating on models that included differ-
ent orders of fit for the additive genetic and the perma-
nent environmental random regression parts and that
used a different temporary environmental variance for
each year of age represented (i.e., seven error variances).
Previous analyses with growth data in beef cattle have
fitted additive genetic and permanent environmental
(co)variances with the same order of polynomial regres-
sion (Meyer and Hill, 1997; Meyer, 1998a, 1999). Veer-
kamp and Thompson (1999) used equal and different
orders of fit for the RRM of live weight of dairy heifers
during the first 15 wk of lactation using the ASREML
program (Gilmour et al., 1999).

Table 2 shows the number of parameters, likelihood
values, eigenvalues of the estimated coefficient matrices,
and estimates of the error variances for selected analy-
ses. The results indicate that the simple repeatability
model (the intercept model; 3-1-1) was not statistically
adequate. The likelihood values were significantly
smaller for the intercept model than for any other model.
The greater estimates of error variances at each age with
the repeatability model indicate that those variances
tended to pick up variation due to insufficient order of
fit (Meyer, 1999).

For all other analyses, order of fit of rank 2 sufficed
to model the polynomial regression for additive genetic
effects. The third eigenvalue (λG3) was nearly 0 for anal-
yses with orders greater than 2 and models with order
3 but with rank of 2 had likelihood values similar to the
corresponding full model, regardless of the rank for the
permanent environmental effects (models 3-3-5 with
ranks 3-5, 2-5, and 2-4, respectively). In some cases,
likelihoods at convergence did not agree with the theoret-
ical expectation that a more complex model would have
a better �. For example, likelihood values for models
with nG = 3 and nP = 5 (3-3-5, reduced rank models) were
slightly smaller than likelihood values for submodels
with nG = 2 and nP = 5 (3-2-5, ranks full and 2-4). If
the additional parameters do not improve modeling of
additive genetic effects, the likelihood should not change
and estimates of the additional parameters should be 0.
The reason for that unexpected arithmetic result, which
occurred when different orders of fit were chosen for the
genetic and the permanent environmental effects, is not
clear. The discrepancy may be due to some problem with
the implementation of the algorithms. Differences of
small magnitude, however, such as the ones reported
here, might indicate numerical problems in locating the
maximum for the log likelihood (K. Meyer, personal com-
munication). Similar convergence problems were re-
ported by Meyer (1999) using DxMRR, even with more
than one restart of the optimization procedure, and they
were also evident in Albuquerque and Meyer (2001). In
fact, analyses with model 3-3-5 required several restarts
and stopped a few times with an iterative run in prog-
ress. A higher order polynomial seemed to be required
to model the permanent environmental random (co)vari-
ance structure than was required to model the genetic
covariance. Orders of fit of 4 and 5 provided the best
likelihood values.

The parsimonious model was found to have orders
of fit 2 and 5 for the additive genetic and permanent
environmental effects, respectively, but with a reduced
rank of 4 for the permanent environmental part (model
3-2-5, rank 2-4). That model had the largest likelihood
value (among the tested models) of −428.82 but was not
significantly different from that for the full model (3-2-
5) of −428.99. The model had 24 parameters (1 less than
the full model). A subset of four linear combinations of
the five polynomials sufficed to fit the trajectory. That
result is different from fitting linear and cubic regres-
sions for the additive and the permanent environmental
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effects (model 3-2-4), which resulted in a model requiring
20 parameters but which was significantly inferior to
the proposed “parsimonious” model. The parsimonious
model was also better than the model with quadratic
and quartic polynomial regression for the additive ge-
netic and the permanent environmental effects, with
reduced ranks of 2 and 4 (model 3-3-5, rank 2-4). Likeli-
hoods were not significantly different, but the parsimoni-
ous model required two parameters less than the 3-3-5,
rank 2-4 model. That result was confirmed with several
restarts of the iteration, and it might indicate a failure
of the maximization procedure to locate the maximum
of the likelihood for the latter model, which contained
unnecessary components of the additive genetic KG.

Meyer and Hill (1997) compared the CF-RRM model
and an unstructured five-trait multivariate animal
model using annual weights of Australian beef cows be-
tween 2 and 6 yr of age. They used the same order of fit
for the genetic and permanent environmental CF and
concluded that the repeatability model did not statisti-
cally describe the data adequately. They found that the
likelihood did not increase significantly for n > 2, which
indicated that the growth trajectory could be described
by a linear trend in the (co)variance structure, which
agrees with the present study for the additive genetic
effects. Meyer (1998a) reanalyzed data from Meyer and
Hill (1997) with ages at weighing in months (19 to 70)
with a RRM with increasing order of fit (up to six) but
with restriction of the ranks of the genetic and perma-
nent environmental components to one and to three. She
found that the likelihood improved until order of n = 4.
She indicated that change in scale was expected to have
little effect on the estimates and suggested that the
stronger pattern for covariances observed in the second
study (Meyer, 1998a) was due to less variation being

G(a*i, a*i)=[1 a*j]
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with a*i and a*j denoting the ith and jth ages in the
standardized range (−1 < a* < 1).

The first eigenvalue of the coefficient matrix of the
additive genetic CF explained about 96% of the total
genetic variance. The corresponding eigenfunction is
presented in Figure 2. A positive linear pattern, with
moderate slope, was evident for the leading eigenfunc-
tion (0.41 to 0.97) as the cows aged. The pattern indi-
cates positive genetic correlations across ages as ani-

removed by fixed effects. Meyer (1999) used a RRM to
analyze monthly weights of 2- to 10-yr-old (19 to 119
mo) Australian Hereford and Wokalup cows. The envi-
ronment was characterized by strong seasonal effects.
Records taken in January were chosen for analysis. That
study compared various sets of fixed effects and defini-
tions of contemporary groups, orders of fit and rank, and
transformations of the data to find the most suitable
model. She concluded that orders of fit of n = 3 and n =
4 were appropriate for Herefords and Wokalups, respec-
tively. Examination of full and reduced rank models indi-
cated that rank of m = 2 sufficed to model permanent
environmental variation, but ranks of m = 3 for Here-
fords and of m = 2 for Wokalups were needed for genetic
variation. The final model also transformed ages to log
scale and included seven residual variances, resulting
in 23 and 21 parameters to be estimated for Herefords
and Wokalups, respectively (Meyer, 1999). The results
for Wokalups agreed with those in the present study for
the genetic CF. For live weight during the first 25 wk
of lactation of Holstein heifers, Koenen and Veerkamp
(1998) also found that CF with order of fit of n = 2 sufficed
to model additive genetic variation, as for cow weight
in the present study. Veerkamp and Thompson (1999)
reported that the likelihood improved until order n = 4,
although the higher order was primarily needed to model
permanent environmental effects. In their study, an or-
der of n = 3 was sufficient to model additive genetic
effects for live weight during the first 15 wk of lactation
of Holstein heifers.

Covariance Functions

The estimated CF for additive genetic (G) and perma-
nent environmental (P) effects for the parsimonious
model are

mals reach maturity. In other words, selection for in-
creased weight at any age would tend to increase weight
throughout the entire growth period. Another im-
portant consequence is that weight measurements
early in life can be used to select for mature weight to
reduce the generation interval in selection programs.
This result agrees with results for multivariate analy-
ses with the “traditional” linear animal model (Arango
et al., 2002), which resulted in large genetic correlations
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Figure 2. First and second eigenfunctions from estimates of the additive genetic CF coefficient matrix for model 3-
2-5, rank 2-4.

(0.92 to 1.00) between ages. The second eigenvalue ac-
counted only for approximately 4% of the total variation
of additive genetic effects. Meyer and Hill (1997) found
that the first two eigenvalues accounted for 97 and 3%
of total genetic variability for orders of fit of n = 2 and
of n = 5. Their results agreed with those from a second
study that fit ages in months (Meyer, 1998a), in which
estimates of eigenvalues for the genetic effects were 0
for orders of fit or rank greater than 2 until n = 4; for
n ≥ 5, some sizeable genetic eigenvalues were interpre-
ted as possible artifacts of the polynomial function and
the univariate fixed effects of the model of analysis
(Meyer, 1998a). Meyer (1999), with a wider spread of
ages and an additional breed, reported similar results
for the spectral decomposition of the CF. With her final
model, the first genetic eigenfunction explained most
of the variation (92 and 97% for Hereford and Wokalup,
respectively) and followed the same trend, with positive
values through all ages. Koenen and Veerkamp (1998)
reported that for live weight of Holstein heifers during
the first 25 wk of lactation, the first eigenfunction ex-
plained 98% of total genetic variation, showed a liner
trend, and was positive throughout the period in
agreement with the present study.

Estimates of Variance Components

Estimates of additive genetic, permanent environ-
mental, and phenotypic standard deviations for the par-
simonious model are shown in Figure 3 for the range of
ages. In general, estimates of additive genetic standard
deviations increased linearly with age from 28 (at 19
mo) to 57 kg (at 103 mo). Those estimates agreed well

with estimates from univariate and pairwise bivariate
analyses of the same data by age (yr) at early and inter-
mediate ages (Arango et al., 2002), although the esti-
mates differed after approximately 6 yr of age. The
apparent upward bias of estimates of genetic standard
deviations at late ages indicates an inadequacy of CF-
RRM to model genetic variability at late ages. The diffi-
culty seems to be related to properties of polynomial
regression (i.e., growth is asymptotic but polynomial
regression is not [S. Kachman, personal communica-
tion]), which does not behave well at the extremes of
the age range and with the order of fit used to describe
the data. The same problem was previously observed
using CF-RRM (Meyer and Hill, 1997; Meyer, 1998a,
1999). To alleviate that problem, Meyer (1999) elimi-
nated records of ages 115 to 119 mo, transformed ages
to log scale, and used nine instead of six residual vari-
ances. The new analyses somewhat decreased the in-
crease in estimates of variances with age but did not
cure the problem (estimates were similar). She con-
cluded that “higher order terms in modeling the popula-
tion trajectory were the source of the problem.” Poor
estimates of genetic variance at extremes of the trajec-
tory were also observed for lactation curves in dairy
cattle (Jamrozik and Schaeffer, 1997; van der Werf et
al., 1998).

Genetic (Co)Variances and Correlations

Estimates of additive genetic covariances (Figure 4)
between adjacent ages exhibited an increasing pattern
as animals aged, describing an upward tilted plane in
a three-dimensional plot. Corresponding genetic corre-
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Figure 3. Estimates of additive genetic (G), permanent environmental (PE), and phenotypic (Ph) standard deviations
and heritability (h2) of monthly weights of Cycle I to IV cows.

lations (Figure 5) exhibited a smooth surface dominated
by large values, which formed nearly a plane about
unity, except for extreme ages. Genetic correlations de-
clined as the interval between ages increased but were
greater than 0.70 for any pair of ages. The measure-
ments at 72 mo of age had estimates of genetic correla-
tions of over 0.84 with all other ages and over 0.90
with ages greater than 28 mo. That pattern agrees with
estimates of genetic correlations between measure-
ments at ages of 2 through 6 yr obtained with the finite-
dimensional model (Arango et al., 2002), which ranged
from 0.92 to 1.00. Those results, along with the dis-

Figure 4. Estimates of genetic (co)variances (Cov) between monthly weights for ages 1 and 2 (Age 1, Age 2) with
model 3-2-5, rank 2-4.

agreement for estimates of genetic variance at late ages
with the CF-RRM, and the simplicity and robustness
of the univariate analysis, seem to indicate that a re-
peatability model might be an acceptable approxima-
tion to model variation for cow weight in this popu-
lation.

Meyer and Hill (1997) and Meyer (1998a, 1999) found
that surfaces of plots of additive genetic covariances
and correlations by pairs of ages depended on the order
of fit chosen. Their plots represented an upwardly tilted
plane, as in the present study, when fitting age with
the CF-RRM for yearly weights (Meyer and Hill, 1997).
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Figure 5. Estimates of genetic correlations (Corr) between monthly weights for ages 1 and 2, (Age 1, Age 2) with
model 3-2-5, rank 2-4.

With higher orders of fit (n = 3 and 4), the plots of
genetic covariances between pairs of ages were smooth
and increased until about 5 yr of age and then formed
a plateau for Hereford cows (Meyer, 1999). Genetic cor-
relations with n = 4 were high across pairs of ages with
a plateau close to unity for pairs of ages 3 yr and older
for Wokalups (Meyer, 1998a, 1999). For Herefords, the
correlations were more variable and as low as 0.23 be-
tween extreme ages (19 and 199 mo). For live weight
during the first 25 wk of lactation of Holstein heifers,
Koenen and Veerkamp (1998) found that a CF of order
n = 2 defined high genetic correlations between weights
for different stages of lactation (0.88 to 1.00).

Permanent Environmental and Phenotypic Covariances

Estimates of permanent environmental and pheno-
typic standard deviations (Figure 3) increased mark-
edly for measurements at older ages (Figure 3). Corres-
ponding covariances and correlations (Figures 6 and 7)
among older ages also increased. The apparent weak-
ness of the model for fitting weights at extreme older
ages might be due to 1) a lack of mathematical flexibility
to model growth adequately with orthogonal polynomi-
als; 2) the small number of records at the extreme age
points; and 3) the general property of the regression
methods, for which measurements at extreme ages may
have important effects on the estimation of regression
coefficients. Rawlings et al. (1998) indicated that even
with polynomial models of higher order and associated
smaller residual sum of squares, the transformation to
specific ages might exhibit wild oscillations. Estimates
here were within the range of those reported with the
finite-dimensional animal model from this study (Ar-
ango et al., 2002), except for extreme ages. Meyer
(1998a, 1999) reported a similar pattern for covariances

of permanent environmental effects with erratic esti-
mates and a large increase in variances for oldest ages.
She concluded that “higher order terms in modeling
population trajectory were the source of the problem”.
That might explain a similar pattern for permanent
environmental effects (nP = 5) but not for genetic effects
(nG = 2) in the present study. However, the results
would indicate an inadequacy of the model to fit within-
year variation due to seasonal effects. That inadequacy
was evident in an analysis of monthly weights subject
to strong seasonal effects in Australia (Meyer, 2000).
Meyer tried to model the fluctuations in residual error
variances with 12 distinct components repeated cycli-
cally and found increases in � were somewhat smaller
than increases in the � from adding 55 parameters to
fit individual measurement error variances (318.1 vs.
361.6 for k = 20). Those results suggested that the model
with variances of cyclic errors represents a reasonable
compromise between parsimony and adequacy for mod-
eling temporary environmental variation. The results
also indicate that some age-specific nonseasonal varia-
tion was not explained using the model with cyclic error
variances (Meyer, 2000). Meyer (1999) also reported
increasing phenotypic variation with age, with varia-
tion being greater for Herefords than for Wokalups.
Andersen and Pedersen (1996) also reported increased
phenotypic variation with time for weight gain with an
almost linear trend between 35 to 115 kg of live weight
and also suggested a log transformation to stabilize
variation over time.

Analyses with ages transformed to the logarithmic
scale and including only ages represented in all cycles
(21 to 78 mo) were also done for the parsimonious model.
The analysis on the log scale did not converge after 10
restarts. Estimates in the last round, although some-
what smaller, followed the same pattern as those with
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Figure 6. Estimates of permanent environmental (co)variances (Cov) between monthly weights for ages 1 and 2
(Age 1, Age 2) with model 3-2-5, rank 2-4.

the normal scale and, evidently, did not solve the prob-
lem of a poor model for extreme ages. The same pattern
was found for analyses with fewer ages (21 to 78 mo),
in which estimates of SD were less at extreme ages.
The patterns of SD and covariances, however, were the
same as for analyses on the normal scale.

Estimates of permanent environmental and pheno-
typic correlations (Figures 7 and 9) were greater than
0.60 among most pairs of intermediate ages but fluctu-
ated and were smaller among pairs of extreme ages.
That pattern was less evident with a lower order of fit
(i.e., model 3-3-3). The estimates also might indicate
that a higher order polynomial is required to model

Figure 7. Estimates of permanent environmental correlations (Corr) between monthly weights for ages 1 and 2 (Age
1, Age 2) with model 3-2-5, rank 2-4.

permanent environmental CF in these data (nP = 5), as
suggested by Meyer (1999), who reported small esti-
mates of covariances and correlations between pairs of
records at extreme ages for Hereford cows. Estimates
of permanent environmental and phenotypic correla-
tions at intermediate ages agreed well with those ob-
tained with the finite-dimensional model (Arango et
al., 2002).

Plots of phenotypic covariance and correlation matri-
ces (Figures 8 and 9) showed evident spikes along the
diagonals. Those peaks represent inflation of variance
probably caused by measurement error variances and
other date-specific effects (diseases, seasonal weather
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Figure 8. Estimates of phenotypic (co)variances (Cov) between monthly weights at ages 1 and 2 (Age 1, Age 2)
with model 3-2-5, rank 2-4.

changes). The increase of the phenotypic variances on
the diagonal by the CF-RRM was reported in early ap-
plications of infinite-dimensional analyses of lactation
curves of Holstein cattle for the estimation of pheno-
typic covariance structure (Kirkpatrick et al., 1994).
Meyer and Hill (1997) and Meyer (1998a, 1999) also
reported diagonal peaks of inflation for phenotypic vari-
ances, implying temporary environmental variance.

Heritability Estimates

As with estimates of additive genetic variances, esti-
mates of heritability also tended to increase with age
(0.38 at 35 to 37 mo, to 0.78 at 92 to 95 mo). The excep-

Figure 9. Estimates of phenotypic correlations (Corr) between monthly weights at ages 1 and 2 (Age 1, Age 2) with
model 3-2-5, rank 2-4.

tions were estimates at extreme ages, which were domi-
nated by fluctuations in estimates of error variances.
Heritability estimates were smallest at about 3 yr of
age, corresponding to the large error variance at that
age (Table 2). The negative but complementary rela-
tionship between estimates of permanent environmen-
tal variance and estimates of genetic variance was evi-
dent over time, as those components of variance tended
to balance each other. That pattern was also found with
the finite-dimensional analyses (Arango et al., 2002).
Estimates of heritability with the CF-RRM were similar
to estimates with the repeatability model (0.51 to 0.58)
and the multivariate finite-dimensional (0.50 to 0.66)
models, except at older ages when estimates using the
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CF-RRM were larger (over 0.70 after 88 mo). That result
further suggests the deficiency of the model to fit data
at extremes of the age range and indicates that predic-
tion of breeding values or permanent environmental
effects using the CF-RRM should be considered with
caution. Nevertheless, for practical selection purposes,
such estimates might not be an important constraint
because selection using weights at such later ages usu-
ally would not be practiced. Meyer (1999) also found
estimates of heritability with CF-RRM to be from 0.37
to 0.57 (19 to 119 mo), which were somewhat larger
than the 0.31 obtained with a repeatability model with
age (yr) as a fixed effect (Meyer, 1995) for Hereford
cows. She reported estimates of heritability that agreed
well between the two models for Wokalups, ranging
from 0.42 to 0.49 for the CF model and 0.48 for the
repeatability model (Meyer, 1999).

Implications

This research suggests that covariance structures for
permanent environmental effects are complex to model,
which forced the use high polynomial orders. On the
other hand, most of the genetic effects are highly corre-
lated through the age trajectory and could be acceptably
modeled by a linear trend. In fact, genetic correlations
were high among all ages for which one may presume
that selection for adult weight could be applied. Al-
though the linear repeatability model did not fit the
data mathematically as well as more complex random
regression models for cow weights, a simple repeatabil-
ity model similar to those now used for routine national
cattle evaluations might be an acceptable approxima-
tion for practical purposes to compute expected progeny
differences for mature weight given the simplicity and
robustness of the repeatability model.
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